Extensions 1→N→G→Q→1 with N=C22 and Q=Dic18

Direct product G=N×Q with N=C22 and Q=Dic18
dρLabelID
C22×Dic18288C2^2xDic18288,352

Semidirect products G=N:Q with N=C22 and Q=Dic18
extensionφ:Q→Aut NdρLabelID
C22⋊Dic18 = C12.1S4φ: Dic18/C12S3 ⊆ Aut C22726-C2^2:Dic18288,332
C222Dic18 = C222Dic18φ: Dic18/Dic9C2 ⊆ Aut C22144C2^2:2Dic18288,88
C223Dic18 = C36.49D4φ: Dic18/C36C2 ⊆ Aut C22144C2^2:3Dic18288,134

Non-split extensions G=N.Q with N=C22 and Q=Dic18
extensionφ:Q→Aut NdρLabelID
C22.1Dic18 = C36.53D4φ: Dic18/Dic9C2 ⊆ Aut C221444C2^2.1Dic18288,29
C22.2Dic18 = C72.C4φ: Dic18/C36C2 ⊆ Aut C221442C2^2.2Dic18288,20
C22.3Dic18 = C18.C42central extension (φ=1)288C2^2.3Dic18288,38
C22.4Dic18 = C2×Dic9⋊C4central extension (φ=1)288C2^2.4Dic18288,133
C22.5Dic18 = C2×C4⋊Dic9central extension (φ=1)288C2^2.5Dic18288,135

׿
×
𝔽